CULTIVATOR BREAKFAST

Round Table Meeting January 2024

Moderator Jenna Wicks

Program Manager Farm Foundation

2024 JANUARY CULTIVATORS

Rachel Combs-Giroir The Ohio State University

Awatif El Abdellaouy Texas A&M University

Alayna Gerhardt Oklahoma State University

Kiara Ivy Florida A&M University

Ashton Redd University of Arizona

Ryanna Tietje The Ohio State University

Thank you to BNSF and the Round Table Fellows for your support of the Cultivators Program!

Rachel Combs-Giroir

The Ohio State University

EST. 1870

Impacts of waterlogging on pennycress, a new biofuel cover crop

Rachel Combs-Giroir

Farm Foundation Round Table Meeting: January 25th, 2024

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Pennycress: A New Biofuel Cash Crop for the Midwest

- Winter annual cover crop with extreme cold hardiness
- High seed oil content and fatty acid oil composition suitable for aviation fuel
 - Remaining seed meal \rightarrow high-protein animal feed
- Commercial pennycress seed yields are ~1,500 lb ac⁻¹
- If incorporated onto half of the US Midwest Corn Belt, pennycress could...
 - Fix 40 Mt of carbon annually
 - The emissions of ~31 million automobiles
 - Produce ~2.6 billion gallons of oil

CoverCressTM: Commercialized Pennycress

- Rapid domestication through breeding and gene editing:
 - Reduced seed coat fiber for improved nutritional value
 - Low erucic acid for edible oil
 - Reduced seed glucosinolate content for palatable seed meal
 - Increased seed oil content (30-34%)
 - Reduced seed pod shatter
- Current breeding priorities:
 - Early maturity
 - High yield
 - Increased seed size
 - Reduced lodging

- Reduced seed dormancy
 - Improved resilience to environmental stress

COVERCRESS.COM

Pennycress Germplasm & Genetic Resources

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Pennycress fields are susceptible to waterlogging

April/May Flood in 2011- Dr. Win Phippen

Identified 3

Identified

tolerant lines

based on yield

candidate genes

and pathways

waterlogging

response/tolerance

involved in

Variation in seed yield among waterlogged pennycress accessions

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Acknowledgements

Advisor Dr. Andrea Gschwend Co-Advisor Dr. Alex Lindsey

Gschwend Lab Members

Thiranya Wanigarathna Cullen Dixon Gurkirat Singh Dr. Bo Li Alex Solum Tara Creech Molly Dougherty Rosemary Ball Ben Phillips Annabel Shim Alex Koopmans Katie Fulcher

Greenhouse Staff Gary Posey

Horticulture & Crop Science

CFAES

This research was supported by the U.S. Department of Energy, Genomic Science Program grant no. DE-SC0021286

TRANSLATIONAL PLANT SCIENCES graduate program

NSF Graduate Research Fellowship OSU University Fellowship

The Ohio State University

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Changes in gene expression under waterlogging

Gene Ontology Term
response to hypoxia
cellular response to decreased oxygen levels
RNA splicing
response to heat
protein folding
mRNA splicing, via spliceosome
mRNA processing
translation
secondary cell wall biogenesis
xylan biosynthetic process
secondary metabolite biosynthetic process

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Awatif El Abdellaouy

Texas A&M University

Impacts of Proposed Amendments to Federal Milk Marketing Orders

Awatif EL ABDELLAOUY Texas A&M University

Overview of Current FMMO System

11 Federal Milk Marketing Order Areas

Each milk marketing order includes:

Classified price plan
System of minimum prices
Terms of the order
Provisions for administering the order

FMMOs and USDA authorized to amend the F.O through a hearing process overseen by The Secretary of Agriculture.

Ongoing hearing in Carmen Indiana, since August 23rd

NMPF's Proposal: Enhancing Make Allowances

Make allowances : an estimate of dairy processors' cost of converting milk into finished products

Component price per pound = (Product price per pound–Manufacturing Margin)×Yield Factor

The National Milk Producers Federation (NMPF) proposal to amend current make allowances.

Product	Current FMMO Allowance/pound	Proposed	Increase
Cheese	\$0.2003	\$0.2400	\$0.0397
Whey	\$0.1991	\$0.2300	\$0.0309
NFDM	\$0.1678	\$0.2100	\$0.0422
Butter	\$0.1715	\$0.2100	\$0.0385

Scenarios & Impacts

Component price per pound = (Product price per pound–Manufacturing Margin)×Yield Factor

Keeping the status Quo

Excessive manufacturing costs beyond current Federal Order allowances hinder essential plant investments, impeding the consistent meeting of market demand

01

Increasing make allowances above current level

Lowering all class milk prices to levels that would narrow profit margins and adversely affect farmers' income.

High profits in alternative dairy production outpacing fluid milk margins, creating a disincentive to produce sufficient fluid milk and potentially resulting in a shortage.

02

Approving the NMPF proposal

Reduce all Class prices, consequently lowering the minimum blend price paid to farmers.

Processors will pay at class prices aligned with manufacturing costs, enhancing the ability to invest in manufacturing businesses, keeping them more competitive in domestic and global dairy markets.

03

Thank you Q&A

Alayna Gerhardt

Oklahoma State University

Virtual Fencing at Oklahoma State University

A. Gerhardt

HALTER

Corral

VENCE

Sustainable livestock farming for the 21st Century knp

<u>o</u>

≁.⊕

000

Types of Virtual Fence

Movement

Exclusion

Current Research

Oklahoma State University currently has two grants through the EPA and CIG. Both focus on:

- Use of virtual fencing to
 - fence cattle out of sensitive riparian areas
 - improve soil and water quality
 - improve wildlife use and habitats

Oklahoma State Research Stations and Cooperating Ranches

Alayna Gerhardt Graduate Research Assistant, Animal and Food Sciences

E | alayna.gerhardt@okstate.edu

Kiara Ivy

Florida A&M University

THE ESTABLISHMENT AND SPREAD OF NATURAL ENEMIES OF THE RED IMPORTED FIRE ANT (*SOLENOPSIS INVICTA*) IN NORTH FLORIDA

Kiara Ivy Florida A&M University College of Agriculture and Food Sciences Center for Biological Control

PROBLEM OF RED IMPORTED FIRE ANTS (RIFA)

Map created : 12/4/2023

INVASIVE SPECIES ALERT

Introduced to the United States in the 1930s to Mobile, Alabama through ports.

ECONOMIC COSTS

Cost an average of \$6.7 billion USD of damage. In agriculture, urban pest management, and public health areas.

RESISTANCE

These ants have established themselves in polygyne (multiqueen) structures outside of its native range.

ON THE RUN

Native to Brazil and Argentina, but has been found in countries in the Caribbean, China, Taiwan, Australia, and newly Europe.

PARASITOID NATURAL ENEMY

PARASITIC LIFE CYCLE

Lays eggs in the thorax of the ant, larvae of the fly feeds on body of the ant and grows, the ant will die and larva will eat head capsule of the ant and decapitate the ant after pupation is finished to continue the cycle.

PSEUDACTEON SP

Six species released in US since 1996. *Pseudacteon* cultellatus, *Pseudacteon* curvatus, *Pseudacteon* litoralis, *Pseudacteon* nocens, *Pseudacteon obtusus, and Pseudacteon tricuspis*.

Figure A: *Pseudacteon obtusus* female 0.72mm Figure B: Set up of 'pizza' and 'lollipop' trap Figure C: *Pseudacteon curvatus* and *Solenopsis invicta* worker size comparison

Location on I-10	Number of Sites	Month and Year of Survey	Pseudacteon sp. found
Jacksonville	0	Jun-23	N/A
Macclenny	3	May-23, Nov-23	P. curvatus, P. obtusus
Gainesville	5	Apr-23, Dec-23	P. curvatus, P. obtusus, P. tricuspis
Lake City	4	Mar-23	P. obtusus
Tallahassee	5	Mar-23, Dec-23	P. curvatus, P. litoralis, P. obtusus, P. tricuspis
Quincy	5	Mar-23, Nov-23	P. curvatus, P. tricuspis
Blountstown	2	Jun-23, Dec-23	P. curvatus, P. obtusus
Panama City	3	Jun-23	N/A
Jay	5	Apr-23, Oct-23	P. curvatus, P. obtusus
Pensacola	5	Apr-23	P. curvatus, P. obtusus

MICROSPORIDIA NATURAL ENEMY

WHAT DOES IT DO?

Creates cysts on the ovary of the ants and reduces the reproductive ability of queens.

IS IT SAFE?

It is genus specific to Solenopsis

sp.

WHY IS IT IMPORTANT?

It is a natural enemy that can reduce the size and robustness of mounds if present.

Figure A: Spores of the microsporidian pathogen *Kneallhazia solenopsae,* a potential biocontrol of fire ants. (USDA-ARS 2009) (D1491-1)

HOW DO WE COLLECT IT?

In vials with rubber caps and 95-100% Ethanol. We visualize the spores under

Phase Contrast Microscopy.

FUNGAL NATURAL ENEMY

A natural biopesticide that is used for a wide range of agricultural pests.

HOW DO WE COLLECT IT?

Taking samples of dead ants with sporulation and incubating the fungus. We also take samples of the soil in and around the mound.

IS IT SAFE?

Beauveria bassiana Strain 447 is great for outdoor and indoor pest control of ants.

FUNGAL TESTING

We will incubate the dead ants that have sporulation and the soil samples to visualize fungal growth.

Figure A: *Beauveria bassiana* attacking an ant (IGEM 2018)

Acknowledgements Committee members: Anamika Sharma (Principal Advisor) Lambert Kanga Jesusa Legaspi Islam Elsharkawy Thank you: Jamesia Henderson, Kristen Adkins, Bethany Noel, and Herbert Franklin

Ashton Redd

University of Arizona

The Woes of Western Water: A PEOPLE'S PERSPECTIVE

Colorado

River

Ashton Redd Agricultural and Resource Economics, University of Arizona

Brief History

- Understanding the "Law of the River"
 - 1922 Compact
 - Arizona v. California
 - Central Arizona Project
 - Drought Contingency Plan (2019)

OBJECTIVE

Understand the affect water management policies of the Colorado River Basin have on the agriculture industry in Arizona.

Figure 1 Central Arizona Project DCP Image¹

Results

Hay & Haylage (Alfalfa) Irrigated -Average Water Applied

Water Input

 Arizona sees increased water applied

Price Element

 Upward trend in production; measured in sales (Millions \$).

Conclusion

- **Price impact** has been significant as prices have roughly **doubled** since 2017.
- Water management policies have had **no significant** negative **impact** on hay and haylage production **quantity**.
- Patterns in **yield increase** follow that of **water applied**. Arizona and Nevada see slight uptakes while California decreases.

RELEVANT DISCUSSION

- 10,670,762 acre feet in the past five years entering the supply system (irrigation organizations)².
 - 1,390,290 acre feet in losses
- Farmers in southern Arizona followed Tier 2a cutbacks for 2023
- Expect to see great changes in research results in one year

Thank You!

For questions please come chat during breaks!

References

- 1. Shortage Impacts. Central Arizona Project. (2024, January). https://www.cap-az.com/water/cap-system/planning-and-processes/shortage-impacts/
- 2. USDA-National Agricultural Statistical Service (2013 2022). Unpublished raw Data.

Ryanna Tietje

The Ohio State University

EST. 1870

Securing the future of the farm: Impacts of farm succession planning

Ryanna Tietje Dr. Margaret Jodlowski & David Marrison

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

My Background

- Raised on the family farm
- Studying Agribusiness and Applied Economics
- Internship experiences:
 - Ag lending
 - Grain risk management
 - Financial planning

CFAES

Research Background

• Accelerating rates of farm consolidation

• Issues of connection to farming for young people

Research Objectives

- Which factors determine whether an operation has a succession plan?
- What is the relationship between succession planning and operational performance?
- Control for impact of variables impacting both presence of succession plan and farm's future financial stability

Methods

Self-designed Survey of Ohio's Farmers

- Distribute through the networks of OSU Extension, Ohio Corn & Wheat, Ohio Farm Bureau, and Ohio Soybean Council
- Collect data on demographic and farm characteristics of the primary operator, potential heirs, and agricultural operation
- Analyze relationships using descriptive statistics and regressions

CFAES

Connect

Ryanna Tietje

- Phone: 419-966-1187
- Email: Tietje.9@osu.edu
- LinkedIn: linkedin.com/in/ryanna-tietje

THE OHIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

