

Economic Impacts of FMD on North America and Australia

Draft Presentation PREISM Workshop Washington, DC October 22-23, 2009

- Thomas L. Marsh, Principal Investigator
 - Professor, School of Economic Sciences, IMPACT Director, Washington State University
- Peter R. Tozer, Collaborator
 - Senior Lecturer, Curtin University, Western Australia
- Evgeniy Perevodchikov, Collaborator
 - PhD Candidate, School of Economic Sciences, Washington State University
- Lia Nogueira, Collaborator
 - Assistant Professor, Department of Agricultural and Consumer Economics, University of Illinois

Overview

- Motivation
- Objectives
- Models
- Results
- Discussion

Motivation

- Invasive species in livestock pose a serious threat to agriculture, human health, and the economy.
 - The UK livestock industry has suffered large losses due to FMD outbreaks (most recent cases in 2007).
 - A single mad cow (BSE) found in Alberta in 2003 cost Canada \$25 million per day (FSB News, 2003).
 - In 2003, the U.S. lost about \$3-5 billion in exports because a single incident of mad cow disease in Washington State.

Motivation

- Invasive species policies and impacts differ across the world given cultural, socio-economic, political and spatial diversity. For example,
 - U.S. has contiguous neighbors (Canada & Mexico), large domestic population, feedlot driven beef production, exports about 7% of production.
 - Australia is a large island country, domestic population about the size of New York, 80% grass fed, exports about 65% of production, also large exporter of live

cattle.

Motivation

- (cont.)
 - Canada, smaller domestic population, feedlot driven beef production, exports about 44% of production.

 Mexico, larger domestic population , lower income, 65% grass fed, 35% feedlot production (northern part of the country), some live exports.

Objectives

- *Project*: Provide estimates of welfare measures focusing on a invasive species (hypothetical FMD) outbreaks in livestock sectors for North America (U.S., Canada & Mexico) and Australia.
- Compare FMD outbreaks for beef cattle across countries
 - Decentralized model for each country

Summary Statistics

	Population	Per Capita GDP	Production	Exports	Imports	Per Capita Consumption
	(million)	US dollars	(1000 metric tons)	(1000 metric tons)	(1000 metric tons)	(pounds)
Australia	19.2	20880	1988	1329	0	77.6
Canada	31.3	23621	1246	547	275	69.0
Mexico	100.3	5823	1900	3.5	420	50.8
United States	281.4	34280	12298	1141	1375	97.8
				Beef and Veal Summ		
	Population	Per Capita GDP	Production	Exports	Imports	Per Capita Consumption
	(million)	US dollars	(1000 metric tons)	(1000 metric tons)	(1000 metric tons)	(pounds)
Australia	21.3	47582	2159	1407	0	78.5
Canada	33.3	45033	1285	494	230	68.3
Mexico	107.7	10103	2225	0	408	53.0
United States	304.5	47427	12163	856	1151	90.2

Why FMD?

- Highly contagious with severe productivity, food security, and trade implications
- Outbreaks reported in 52 countries since 2000
- 70 countries recognized as FMD free (more than 100 countries not recognized as FMD free by OIE)
- Last reported FMD outbreak in study countries
 - Australia- 1872
 - Canada 1952
 - Mexico 1954
 - U.S. 1929

Reported FMD Outbreaks 2005 - 2009

Theoretical Model

- Assume a representative producer maximizes an infinite stream of discounted expected profits subject to age specific stock dynamics and other production constraints (Jarvis; Aadland).
- Representative producer chooses the number of cull cows, imports, exports to max expected profit.
- Linked to a partial equilibrium framework, and assuming perfectly competitive markets, products are sold on the domestic market, as well as imported and exported (Zhao, Wahl, and Marsh).

Empirical Model

- Specified as a deterministic, discrete time optimal control model to account for intertemporal nature of livestock inventories and invasive species.
- Allows nested time steps: production/marketing decisions (annual) and FMD spread (weekly).
- Systematically link economic decisions on breeding inventories to live or feeder cattle, retail, and import & export markets.
- Calculate welfare impacts from hypothetical FMD outbreak.

Empirical Models

- Extensions from previous work
 - Price expectations
 - Disposal and indemnification costs
 - Live cattle trade
 - Feedlot and/or pasture systems
- Programmed in GAMS

Example Model

Example Model

World Class. Face to Face.

Model Data & Assumptions

- Historical production, feeding & slaughter parameters, and data from respective government agencies, published research, or estimated values.
- Consider a FMD outbreak with export market bans imposed for 3 yrs and decrease 5% domestic demand.
- Calibrated the U.S., Canadian, Mexican, & Australian models to 2000 inventories, market prices/quantities, etc.

FMD Assumptions

- Standard S-I-R type model
 - States
 - susceptible
 - latent infectious (first week), second week infectious, third week infectious
 - immune (recovered or vaccinated)
 - removed (dead or depopulated)
- Parameters from Schoenbaum and Disney (2003) and others.

Country Specific Characteristics

- Australia
 - 80% fed cattle on pasture
 - 20% in feedlot
 - Price grid constructed for WA
 - Live cattle exports
 - No cattle imports

Country Specific Characteristics

• For Mexico

- 65% fed cattle on pasture (south)
- 35% in feedlot (north)
- Live cattle exports

	Change in Total Surplus (\$US]					Billion)*
Scenarios	Depop Rate		Australia	Canada	Mexico	United States
1	50%		-7.37	-14.48	-16.79	-91.89
2	60%		-5.12	-12.20	-8.95	-59.54
3	70%		-3.32	-9.88	-5.91	-40.75
4	80%		-1.88	-8.16	-4.24	-29.12
5	90%		-0.75	-6.43	-3.30	-21.53
* Duelineine						

* Preliminary estimates based on depopulating latent infected stock.

Australia

Mexico

Discussion Points

- Economic impacts vary by country
 - Mexico, U.S.
 - Australia, Canada
- Alternative Tactics
 - Depopulation
 - Vaccination
 - Joint

Discussion Points

- Model runs dependent upon historical parameters and assumptions.
- Circumstances may require region specific adjustment to production management and technologies (birth, calving, weaning rates).

Future Research

- Role of compensation costs and payments in model.
- More regionalization and cooperative policies.
- Multiple species, as well as wild life.
- Impacts on lower income countries (food security, draft animal productivity). School of Economic Sciences

Working Papers

- Tozer, P.R. and T.L. Marsh. 2009. "Invasive Species Management: FMD in the Australian Beef Sector."
- Nogueira, L., T. L. Marsh, and D. Peel. 2009. "FMD in the Mexican Cattle Industry."
- Perevodchikov, E. and T. L. Marsh. 2009. "International Trade and FMD in the Canadian Livestock Sector."

Special Thanks:

USDA-ERS PREISM Program

Department of Agriculture, Australia

Derrell Peel, Oklahoma State University

Craig Osteen & Richard Stillman, USDA-ERS

Questions/Comments?

Selected References

- Aadland, D. 2004. "Cattle Cycles, Heterogeneous Expectation and the Age Distribution of Capital." *Journal of Economic Dynamics and Control* 28:1977–2002.
- Jarvis, L. 1974. "Cattle as Capital Goods and Ranchers as Portfolio Managers: An Application to the Argentine Cattle Sector." *Journal of Political Economy* 82:489–520.
- Schoenbaum, M.A., and W.T. Disney. 2003. "Modeling Alternative Mitigation Strategies for a Hypothetical Outbreak of Foot-and-Mouth Disease in the United States." *Preventive Veterinary Medicine* 58(1-2): 25–52.
- Zhao, Z., T. Wahl, and T. Marsh. 2006. "Invasive Species Management: Foot-and-Mouth Disease in the U.S. Beef Industry." *Agricultural and Resource Economics Review* 35:98–115.

