The Role of Economic Analysis at NIST

Gary Anderson
Economist
Office of the Director

NIST's Role in Innovation

NIST Mission

To promote U.S. innovation and industrial competitiveness by advancing

measurement science, standards, and technology

in ways that enhance economic security and improve the quality of life for all Americans.

NIST's Role in Innovation

Infratechnology impacts every stage of innovation

Economics & Strategic Planning

The Cost of Not Having Critical Infratechnologies

Focus of Study	Infrastructure Studied	Industries Covered	Estimated Annual Costs of Inadequate Infrastructure
Interoperability costs (1999)	Product design data exchange	Automotive supply chain	\$1 billion
Deregulation (2000)	 Metering Systems monitoring/control	Electric utilities	\$3.1–\$6.5 billion
Software testing (2002)	All stages of the testing cycle	Transportation equipmentFinancial servicesExtrapolation to entire U.S.	\$1.8 billion \$3.3 billion \$60 billion
Interoperability costs (2004)	Business data exchange: production scheduling, inventory management, procurement, and distribution/marketing	Automotive supply chainElectronics supply chain	\$5 billon \$3.9 billion
Interoperability costs (2004)	Business data exchange: design & engineering, construction, and operations & maintenance	Construction/building systems management	\$15.8 billion
Medical testing (2004)	Quality of measurement assurance	Laboratories (calcium)	\$0.06–\$0.199 billion

Demonstrating NIST Impact

Economic Studies Performed

- Average benefit-cost ratio of 44:1 in 19 studies since 1996
- •Estimates of direct impacts only; no multiplier effect estimated
- Caveat selection of projects based on perceived existence of industry impact; not randomly selected
- •Topics cover wide range of technologies and industries and can be collectively viewed as a legitimate indicator of NIST industry impact

Demonstrating NIST Impact

Sample of Retrospective Economic Impact Studies: Outputs and Outcomes of NIST Laboratory Research

-			
Industry/Project	Output	Outcomes	Measure
Chemicals: Standards for sulfur in fossil fuels (2000)	Measurement methodsReference materials	Increase R&D EfficiencyIncrease productivityReduce transaction costs	IRR: 1,056% BCR: 113 NPV: \$409M
Semiconductors: Josephson volt standard (2001)	Measurement methodsReference materials	Increase R&D efficiencyEnable new markets	IRR: 877% BCR: 5 NPV: \$42M
Communications: Data encryption standard (2001)	Standard (DES)Conformance test methods	Accelerate new marketsIncrease R&D efficiency	IRR: 270% BCR: 58–145 NPV: \$345M–\$1.2B
Communications: Role- based access control (2001)	Generic technologyReference models	Enable new marketsIncrease R&D efficiency	IRR: 29-44% BCR: 43-99 NPV: \$59-138M
Energy: Gas mixture standard for regulatory compliance (2002)	Standard (NTRM)	Increase productivityReduce transaction costs	IRR: 221–228% BCR: 21–27 NPV: \$49–63M
<i>Manufacturing:</i> Product design data standard (2002)	Standard (STEP)Conformance test methods/facilities	Increase R&D efficiencyReduce transaction costs	IRR: 32% BCR: 8 NPV: \$180M

IRR=Internal (Social) Rate of Return, BCR=Benefit-Cost Ratio and NPV=Net Present Value.

Studies available at http://www.nist.gov/public_affairs/budget.htm

Recent and Ongoing Analysis

Programmatic Studies

- Economic Impact of Measurement in the Semiconductor Industry
 - Calculated the investments and benefits of measurement science investments as well as other measurement-related activities
 - 1996–2006 semiconductor supply chain invested \$12.3 billion measurement expenditure (in 2006 dollars).
 - Estimates of economic benefits accruing between 1997 and 2011, which stemmed from investments made between 1996 and 2006 are Net present value: \$17 billion Benefit-cost ratio: 3.3 Internal rate of return: 67%

More microeconomic project studies

- Prospective Planning studies: Technology Infrastructure Needs of the U.S. Biopharmaceutical Industry
 - Industry currently spends: \$21 billion per year on R&D;1.2 billion per year on technology infrastructure
 - Probability of FDA approval for a drug candidate could be increased from 30 to 40 percent
 - Expenditures for a new FDA-approved drug could be reduced from between 25 and 48 percent (to between \$289 million and \$421 million, compared to a current baseline cost estimate of \$560 million)
 - Time to move from discovery through clinical trials could be reduced from 11 years to as little as 8 year
- Retrospective Impact studies
 - Several On-Going

Other retrospective analysis

- Econometric studies based on linked firm and establishment level data
- Bibliometric analysis

Moving Forward

Increased Importance of Effective Budget Allocation

NIST Laboratory Budget Relative to Industry-Funded R&D

